Sensitivitas Keputusan Terhadap Nilai Eigenvector DenganPendekatan Weight Product Model
Abstract
Abstrak: Analytic Hierarchical Process (AHP) merupakan suatu metode yang cukup banyakdigunakan untuk menentukan prioritas keputusan yang bersifat majemuk, karena mampumengolah data dengan banyak kriteria baik data yang bersifat kualitatif, kuantitatif, maupunkombinasi keduanya. Perubahan terhadap nilai keputusan ada yang bersifat kuat atau lemahterhadap hasil keputusan yang telah diproses secara empiris. Dengan demikian keputusanglobal yang telah di sintesis dapat mengalami perubahan, jika keputusan parsial mengalaminilai sensitivitas yang lemah. Oleh karena itu untuk membuktikan bahwa keputusan local setiapnilai pairwise matrix yang diuji dari nilai eigenvector hasil normalisasi belum tentu memberikankekuatan keputusan yang sempurna, hal ini dapat terlihat jika dilakukan proses uji sensitivitas dari masing-masing nilai eigenvector keputusan parsial. Hasil pengujian sensitivitas ini akanmemberikan besaran nilai keputusan yang memiliki nilai jangkauan tertentu terhadap batas nilaisensitivitas minimum dan sensitivias nilai maksimum yang dapat mempengaruhi prioritas nilaikeptusan global hasil sintesis. Kata kunci: analytic hierarchical process, eigenvector, prioritas, sensitivitas.Abstract: Analytic Hierarchical Process (AHP) is a widely used method for determining thepriority decision is plural, because it is able to process data with a lot of good data criteria arequalitative, quantitative, or a combination of both. Changes to the value of the decision that isstrong or weak against the decisions that have been treated empirically. Thus the globaldecisions that have been in the synthesis can be amended, if the partial decision experiencingweak sensitivity. Therefore, to prove that local decisions each value tested pairwise matrix ofvalues normalized eigenvector results do not necessarily provide perfect power, it can be seen ifthe process is carried out sensitivity tests of each eigenvector value of the partial decision. Thesensitivity of the test results will give the amount of value judgment which has the value of acertain range of the limit value of the minimum sensitivity and sensitivity maximum value thatcan affect the priority value of the global decisions synthesis results.
Keywords: analytic hierarchical process, eigenvector.priority, sensitivity.
References
Al-Harbi KMAS. 2001. Application of the AHP in project management. Int. J. Proj. Manag. 19:19–27.
Alonso JA, Lamata MT. 2006. Consistency in the analytic hierarchy process: a new approach. Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 14: 445–459.
Farkas A. 2007. The analysis of the principal eigenvector of pairwise comparison matrices. Acta Polytech. Hungarica 4: 1–17.
Hayes K. 2011. Uncertainty and uncertainty analysis methods. Science A and, editor. Sweden Olle: Department of Mathematics. 1-24 p.
Higle JL, Wallace SW. 2003. Sensitivity Analysis and Uncertainty in Linear Programming. 33: 53–60.
Ishizaka A, Lusti M. 2006. How to derive priorities in AHP: A comparative study. Cent. Eur. J. Oper. Res. 14: 387–400.
Saaty TL. 2003. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 145: 85–91.
Vargas RV. 2010. Using The Analytic Hierarchy Process (AHP) To Select And Prioritize Projects In A Portofolio. PMI Glob. Congr. 32: 1–22.
Wang J. 2008. Sensitivity and Uncertainty Analyses of Contaminant Fate and Transport in a Field-Scale Subsurface System. Georgia Institute of Technology, editor. Georgia: Georgia Institute of Technology. 1-233 p.
Alonso JA, Lamata MT. 2006. Consistency in the analytic hierarchy process: a new approach. Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 14: 445–459.
Farkas A. 2007. The analysis of the principal eigenvector of pairwise comparison matrices. Acta Polytech. Hungarica 4: 1–17.
Hayes K. 2011. Uncertainty and uncertainty analysis methods. Science A and, editor. Sweden Olle: Department of Mathematics. 1-24 p.
Higle JL, Wallace SW. 2003. Sensitivity Analysis and Uncertainty in Linear Programming. 33: 53–60.
Ishizaka A, Lusti M. 2006. How to derive priorities in AHP: A comparative study. Cent. Eur. J. Oper. Res. 14: 387–400.
Saaty TL. 2003. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 145: 85–91.
Vargas RV. 2010. Using The Analytic Hierarchy Process (AHP) To Select And Prioritize Projects In A Portofolio. PMI Glob. Congr. 32: 1–22.
Wang J. 2008. Sensitivity and Uncertainty Analyses of Contaminant Fate and Transport in a Field-Scale Subsurface System. Georgia Institute of Technology, editor. Georgia: Georgia Institute of Technology. 1-233 p.
Published
2017-12-01
How to Cite
AKMALUDIN, Akmaludin.
Sensitivitas Keputusan Terhadap Nilai Eigenvector DenganPendekatan Weight Product Model.
BINA INSANI ICT JOURNAL, [S.l.], v. 4, n. 2, p. 111-120, dec. 2017.
ISSN 2527-9777.
Available at: <https://460290.0x60nl4us.asia/index.php/BIICT/article/view/829>. Date accessed: 28 nov. 2024.
Section
Articles
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.