Implementasi Automatic License Plate Recognition untuk mengurangi pelanggaran lalu lintas berbasis Artificial Intelligence

  • Wahyu Purwanto Universitas Bina Sarana Informatika
  • Minda Septiani

Abstract

Abstract - Indonesia is a country with an increasing number of vehicles each year. However, with the growing traffic density in urban areas, traffic violations such as disregarding traffic signs and exceeding speed limits often occur. This research aims to implement the Automatic License Plate Recognition (ALPR) system using the K-Nearest Neighbors (KNN) algorithm to predict and recognize vehicle license plates in plate images. The research also aims to evaluate the accuracy level of the implemented ALPR system. The method used in this research is KNN, which is one of the classification methods in machine learning. The training data used consists of a collection of preprocessed vehicle license plate images. After the training process, the system can recognize and predict vehicle license plates in new plate images. The research results show that the implemented ALPR system using the KNN algorithm can achieve an accuracy level of 93% in recognizing vehicle license plates. This success demonstrates that KNN is an effective algorithm for license plate recognition in plate images. This research has important implications for the development of ALPR systems that can be used for various purposes such as traffic surveillance, security, and law enforcement.

References

[1] Badan Pusat Statistik, “Jumlah Kendaraan Bermotor Menurut Jenis Kendaraan (unit) di Provinsi DKI Jakarta 2020-2022,” Badan Pusat Statistik, 2022. https://jakarta.bps.go.id/indicator/17/786/1/jumlah-kendaraan-bermotor-menurut-jenis-kendaraan-unit-di-provinsi-dki-jakarta.html (accessed Apr. 14, 2023).
[2] A. Sunarya, S. Santoso, and W. Sentanu, “SISTEM PAKAR UNTUK MENDIAGNOSA GANGGUAN JARINGAN LAN,” 2015.
[3] A. Nayak and K. Dutta, “Impacts of Machine Learning and Artificial Intelligence on Mankind.”
[4] A. Budianto, “Automatic License Plate Recognition: A Review with Indonesian Case Study,” Scientific Journal of Informatics, vol. 5, no. 2, pp. 2407–7658, 2018, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/sji
[5] A. Wicaksono Septyanto, M. Waseem Iqbal, M. Usman Bilal, R. Khalid, K. Khaliq, and I. Ullah, “Automatic Number Plate Recognition (ANPR) and Automatic License Plate Recognition (ALPR) System using ANN.” [Online]. Available: www.earticle.net
[6] P. Batra et al., “A Novel Memory and Time-Efficient ALPR System Based on YOLOv5,” Sensors, vol. 22, no. 14, Jul. 2022, doi: 10.3390/s22145283.
[7] Setiyanto, Gunarto, and Sri Endah Wahyuningsih, “Efektivitas Penerapan Sanksi Denda E-Tilang Bagi Pelanggar Lalu Lintas Berdasarkan Undang-Undang Nomor 22 Tahun 2009 Tentang Lalu Lintas Dan Angkutan Jalan (Studi Di Polres Rembang),” Jurnal Hukum Khaira Ummah, pp. 213–225, 2017.
[8] A. Budianto, R. Ariyuana, and D. Maryono, “PERBANDINGAN K-NEAREST NEIGHBOR (KNN) DAN SUPPORT VECTOR MACHINE (SVM) DALAM PENGENALAN KARAKTER PLAT KENDARAAN BERMOTOR,” Jurnal Ilmiah Pendidikan Teknik dan Kejuruan, vol. 11, no. 1, p. 27, Nov. 2019, doi: 10.20961/jiptek.v11i1.18018.
Published
2023-12-21
How to Cite
PURWANTO, Wahyu; SEPTIANI, Minda. Implementasi Automatic License Plate Recognition untuk mengurangi pelanggaran lalu lintas berbasis Artificial Intelligence. INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics, [S.l.], v. 8, n. 2, p. 148 - 157, dec. 2023. ISSN 2548-3412. Available at: <https://460290.0x60nl4us.asia/index.php/ITBI/article/view/2572>. Date accessed: 28 nov. 2024. doi: https://doi.org/10.51211/itbi.v8i2.2572.