Weight Average Model (WAM) For Notebook Selections Dengan Multi-Criteria Berbasis Teknologi

  • Akmaludin Akmaludin Sistem Informasi, STMIK Nusa Mandiri Jakarta

Abstract

Abstrak: Banyak pendekatan yang sering digunakan dalam proses pemilihan (selection)menggunakan Analytic Hierarchy Process (AHP). AHP ini memiliki sejumlah pendekatan dalammenentukan suatu keputusan yang memberikan hasil akhir melalui proses synthesize. Prosessynthezise merupakan tahapan proses perhitungan secara global terhadap sejumlah partialdecision pada tahapan-tahapan proses sebelumnya yang digambarkan melalui banyak criteriayang digunakan dalam penyusunan hierarchy modeling. Weigh Average Model (WAM)merupakan kristalisasi dari AHP, yang dapat memberikan solusi yang berbeda dengan hasilkeputusan yang sama. endekatan model yang digunakan WAM mampu memberikan solusikeputusan score terhadap produk notebook secara optimal yaitu: Prioritas pertama untukSAMSUNG dengan bobot 0.347, kemudian prioritas kedua dengan bobot 0.272 untuk Lenovo,dan prioritas ketiga untuk ASUS dengan bobot 0.218, dan prioritas terakhir dari empat productcomparison yaitu THOSIBA dengan bobot 0.164. Ini hasil yang didapat dengan menggunakanmetode Weight Average Model.
Kata Kunci: Analytic Hierarchy Process, Synthesize, Prioritas, Weight Everage Model,
Abstract: Many approaches are often used in the selection process using the AnalyticHierarchy Process (AHP). AHP has a number of approaches in determining whether a decisionwhich gives the final result through the process synthesize. Synthezise process is a calculationprocess steps globally towards a partial decision in the earlier stages of the process which isillustrated by many criteria used in the preparation of hierarchy modeling. Weigh Average Model(WAM) is the crystallization of the AHP, which can provide different solutions with the samedecision result. This research is a development from earlier on the same product in the form ofNotebook Core i5, which made the process of multi-criteria test based technology. Modellingapproach used WAM is able to provide a solution-making the score against notebook productsoptimally, namely: The first priority for SAMSUNG with the weight of 0,347, then the secondpriority with the weight of 0,272 to Lenovo, and third priority to ASUS with weights 0,218, andthe last priority of the four product comparison namely Thosiba with 0,164 weights. Theseresults were obtained by using Weight Average Model.
Keywords: Analytic Hierarchy Process, Synthesize, Priority , Weight Everage Model,
 

Author Biography

Akmaludin Akmaludin, Sistem Informasi, STMIK Nusa Mandiri Jakarta
Sistem Informasi, STMIK Nusa Mandiri Jakarta

References

Gotze U., 2008. Investitionsrechnung: Modelle und Analysen zur Beurteilung von Investitions vor haben. Berlin: Springer Verlag p 128-132
Haas R., Meixner O. 2008. [e-document]. An illustrated guide to Analytical Hierarchy
Process.University of Natural Resources and Applied Life Sciences, Vienna p 10-18 [Referred to on 10.09.2008]
Poveda, CA and Lipsett, MG. 2013. Weighting sustainable development indicators (SDIs) for Survice mining operations using the Analytical Hierachy Process (AHP): International
Journal of Analytic Hierarchycal Process. Vol. 5 Issue 2. 2013 ISSN 1936-6744 p 53-59 IJAHP-CDFP.
Saaty TL, Vargas LG. 2000. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process.Springer (1st edition), ISBN 978-0792372677.p 3-7
Saaty, TL. 2008. Decision making with the Analytic Hierarchy Process: Int. Journal Service Sciences. Vol. 1, No. 1, p 83-98
Zimmer S, Klumpp M, Abidi H. 2011. Industry project evaluation with the analytic hierarchi process. Institute for logistics and service management FOM university of Applied Science Essen, Germany p 3-4
Published
2017-06-01
How to Cite
AKMALUDIN, Akmaludin. Weight Average Model (WAM) For Notebook Selections Dengan Multi-Criteria Berbasis Teknologi. BINA INSANI ICT JOURNAL, [S.l.], v. 4, n. 1, p. 9-20, june 2017. ISSN 2527-9777. Available at: <https://460290.0x60nl4us.asia/index.php/BIICT/article/view/775>. Date accessed: 28 nov. 2024.